Chem. Ber. 112, 2884-2893 (1979)

Beiträge zur Chemie des Bors, CI¹⁾

Bildung und NMR-Spektren von nido-2,3,4,5-Tetracarbahexaboran(6)-Derivaten

Hans-Otto Berger, Heinrich Nöth* und Bernd Wrackmeyer

Institut für Anorganische Chemie der Universität München, Meiserstr. 1, D-8000 München 2

Eingegangen am 20. Dezember 1978

nido-2,3,4,5-Tetracarbahexaboran(6)-Derivate (4, 6, 7) entstehen bei der Umsetzung von 1-Stanna-4-bora-2,5-cyclohexadien 1 und 3-Diethylboryl-1-stannacyclopentadien 5 mit Methylbordibromid. Dabei durchläuft die Reaktion mit 1 die Zwischenstufe eines 2,5-diborylierten 1-Bora-3-cyclopentens (2, 3). Die ¹H-, ¹¹B- und ¹³C-NMR-Parameter der neuen Verbindungen werden im Zusammenhang mit den Daten anderer *nido*-Hexacarborane diskutiert.

Contributions to the Chemistry of Boron, Cl¹⁾

Formation and NMR Spectra of nido-2,3,4,5-Tetracarbahexaborane(6) Derivatives

nido-2,3,4,5-Tetracarbahexaborane(6) derivatives (4, 6, 7) result from the reaction of 1-stanna-4bora-2,5-cyclohexadiene 1 or 3-diethylboryl-1-stannacyclopentadiene 5 with methylboron dibromide. Here, the reaction of 1 with CH_3BBr_2 yields a 1-bora-3-cyclopentene (2, 3) as an intermediate. The ¹H-, ¹¹B-, and ¹³C-NMR parameters of the new compounds are discussed and compared with the data of other *nido*-hexaborane derivatives.

Die Erfolge bei der Darstellung von Heteroaromaten, in denen die Kohlenstoffdurch Boratome ersetzt sind²⁾, regten zur Suche nach "antiaromatischen" Bor-Kohlenstoff-Heterocyclen an. Diese fallen in die Kategorie der elektronenarmen BC-Heterocyclen. Erste stabile Vertreter dieser Stoffklasse sind 1,4-Difluor-1,4-dibora-2,5cyclohexadiene³⁾ sowie das Pentaphenyl-1-boracyclopentadien⁴⁾. Auch durch Komplexbildung ließ sich ein Boracyclopentadien stabilisieren⁵⁾ oder in Form des destillierbaren 3-Diethylboryl-1-boracyclopentadiens⁶⁾ isolieren. Hingegen führten Versuche⁷⁾, aus 1,2-Bis(dialkylboryl)ethylen-Derivaten durch BR₁-Abspaltung peralkylierte 1,4-Dibora-2,5-cyclohexadiene darzustellen, zu nido-2,3,4,5-Tetracarbahexaboran(6)-Derivaten. Diese Carborane entstehen auch aus Alkinen und dem Carboran $C_{3}B_{4}H_{7}^{8}$ sowie bei der Pyrolyse von Tetramethylendiboran⁹⁾. Zwischenprodukte ließen sich bei der Tetracarbahexaboran(6)-Darstellung⁷) weder nachweisen noch isolieren. Damit sind die Faktoren, welche das Carboran relativ zum isomeren BC-Heterocyclus zu begünstigen scheinen, noch weitgehend unbekannt. Um hierzu einen ersten Beitrag zu leisten, suchten wir nach schonenderen Reaktionsbedingungen; diese fanden wir in der hohen Reaktivität der $Sn - C_{sn^2}$ -Bindung.

© Verlag Chemie, GmbH, D-6940 Weinheim, 1979

Synthesen

Das 1-Stanna-4-boracyclohexadien 1^{10} reagiert in der Kälte nicht mit CH₃BBr₂ im Molverhältnis 1:1, wie dies für eine Überführung in das entsprechende 1,4-Dibora-2,5cyclohexadien erforderlich wäre. Zur vollständigen Umsetzung von 1 benötigt man vielmehr 2 Mol CH₃BBr₂. Die destillative Aufarbeitung der Reaktionsmischung liefert unter CH₃BBr₂-Abspaltung in mäßiger Ausbeute das Tetracarbahexaboran-Derivat 4. Versetzt man das thermisch wenig stabile Zwischenprodukt mit (CH₃)₃SiN(CH₃)₂, so bildet sich in hoher Ausbeute unter Silazanspaltung das destillierbare 2,5-Bis(boryl)-1boracyclopenten 3. Daher ordnen wir dem instabilen Zwischenprodukt die Konstitution 2 zu, mit der die NMR-Spektren vereinbar sind. Gleichung (1) faßt die erzielten Ergebnisse zusammen. Für ein 1,4-Dibora-2,5-cyclohexadien-Derivat fanden sich bei diesen Studien keine NMR-spektroskopischen Hinweise.

Ein 1,4-Diboracyclohexadien-Derivat könnte durch Umlagerung aus einem 3-borylsubstituierten 1-Boracyclopentadien entstehen. 5 reagiert mit $C_6H_5BCl_2$ jedoch nicht in diesem Sinne, sondern zu einem *nido*-2,3,4,5-Tetracarbahexaboran(6)¹¹). Gleiches gilt, wie wir nun fanden, auch für die Einwirkung von CH₃BBr₂ auf 5. Es entsteht ein 2:1-Gemisch der Carboran-Isomeren 6 und 7.

Die Umsetzung (2) beginnt bereits bei -78 °C. Größere (CH₃)₂SnBr₂-Mengen fallen aber erst nach Entfernen des Lösungsmittels und Erhitzen an, die zwischen 80 und 130 °C (bei 10⁻² Torr) zusammen mit dem Carborangemisch übergehen. Redestillation liefert eine fast (CH₃)₂SnBr₂-freie Carboran-Fraktion. Dieses Verhalten legt das Auftreten relativ stabiler Zwischenprodukte nahe. Zudem zeigen die Carboranausbeute von $\approx 30\%$, die relativ drastischen Reaktionsbedingungen und das Auftreten von Isomeren einen komplexen Reaktionsverlauf an. So ist z. B. offen, ob bei der Einwirkung von CH₃BBr₂ auf 5 eines der diborylierten Butadiene 8, 9 oder die Cyclobuten-Derivate 10, 11 entstehen. Hierzu sind eingehendere Untersuchungen geplant.

Der experimentelle Befund, daß weder 1 noch 5 mit CH₃BBr₂ zum Diboracyclohexadien, sondern zum *nido*-Tetracarbahexaboran(6) führen, läßt noch nicht den Schluß zu, daß erstere weniger stabil als letztere sind. Die *Wade*sche Regel¹² legt dies allerdings nahe. Da 1,4-Difluor-1,4-diboracyclohexadiene nicht zum Carboransystem umlagern³, können offenbar zur X – B- π -Bindung fähige Substituenten X elektronenarme BC-Heterocyclen stabilisieren³³). Erste Ergebnisse von Umsetzungen peralkylierter 1-Stanna-4-boracyclohexadiene¹³ mit Borhalogeniden geben aber Hinweise darauf, daß auf diesem Wege 1,4-Diboracyclohexadiene synthetisierbar sind, d. h. daß sich der Reaktionsverlauf durch sterische Faktoren in die beabsichtigte Richtung lenken läßt.

NMR-Spektren

In den Tabellen 1-3 finden sich die gemessenen NMR-Daten.

2,5-Bis(boryl)-1-bora-3-cyclopentene

Die ¹H-NMR-Spektren von 2 und 3 enthalten keine Signale für olefinische Protonen, die bei erfolgreicher Umsetzung von 1 mit CH₃BBr₂ zum 1,4-Dibora-2,5-cyclohexadien zu erwarten wären. Dagegen finden sich breite Signale für allylische Protonen bei 3.44 ppm (2) und 2.35 ppm (3), deren Feinstruktur (${}^{4}J(\text{HCCC}{}^{1}\text{H}_{3})$) aufgrund der kurzen Relaxationszeit für ¹¹B (ausgemittelte Kopplung ${}^{2}J(B^{1}H)$) verloren geht. Die Signale für die = CCH₃-Gruppen werden als Dublett registriert (${}^{4}J({}^{1}HCCC{}^{1}H_{3}))$, und die Abschirmung ist in 2 schlechter als in 3. Die entschirmende Wirkung der Bromsubstituenten am Bor in 2 führt zu einer Überlappung der beiden Resonanzsignale für BCH₃-Protonen, während in 3 hierfür zwei Signale im Verhältnis 1:2 beobachtet werden. Als zusätzlichen Konstitutionsbeleg findet man für 3 eine 1:1-Aufspaltung der N(CH₃)₂-Resonanzsignale – typisch für $(CH_3)_3$ NBXY-Verbindungen – aufgrund der gehinderten Rotation um die B – N-Bindung. Zusätzliche ¹H-Resonanzen für alle Protonen in 3lassen auf die Anwesenheit eines zweiten Isomeren schließen. Da 3 asymmetrische C-Atome in 2,5-Stellung enthält, ist dies ein Hinweis darauf, daß neben der meso-Form mit Borylgruppen in cis-Stellung in untergeordnetem Maß die DL-Form mit Borylgruppen in trans-Stellung vorliegt.

Im ¹¹B-NMR-Spektrum von 3 (Tab. 2) beobachtet man zwei Resonanzsignale im Intensitätsverhältnis 2:1. Das weniger intensive, bei tieferem Feld liegende (89 ppm) entspricht dem Ringboratom; seine Lage ist typisch für die Gruppierung BC_3^{14} . Das besser abgeschirmte (45.2 ppm) liegt im Bereich der (Dialkylamino)dialkylborane¹⁴). Es

	Verbindung	· · · · · · · · · · · · · · · · · · ·	δ ¹ H ^{a)} [ppm]		
2	$\begin{array}{c} H_{3}C \\ H_{3}$	1.10 (B(1)CH ₃) (BrBCH ₃)	3.44 (B ₂ CH)	1.80 (= CCI ${}^{4}J(\text{HH})$ 1.2	H ₃) Hz
<u>3</u> (CH	H ₃ C-H ₂ H ₃ C-H ₂ H ₃ C-H ₃ H ₃ C-H ₃ CH ₃ CH ₃ CH ₃ CH ₃	0.71 (B(1)CH ₃) 0.11 (NBCH ₃)	2.35 (B ₂ CH)	$^{1.66}$ (= CCI $^{4}J(HH)$ 1.5	H_{3}) 2.33 (NCH ₃) Hz 2.37 (NCH ₃)
		B(1)CH ₃ C ₂ H	B(6)CH	3 C(2)H	C(3)CH ₃ C ₂ H ₅
4	$H_{3C} \sim CH_{3}$ $H_{3C} \sim CH_{3}$ $H_{-C} \sim CH_{3}$ $H_{-C} \sim CH_{3}$ $H_{-C} \sim CH_{3}$ $H_{-C} \sim CH_{3}$ $H_{-C} \sim CH_{3}$ $H_{-C} \sim CH_{3}$	- 0.45	0.38	4.00	1.88
6	$\begin{array}{c} & \overset{C}{}_{1}^{2} \overset{B}{}_{5}^{B} \\ & \overset{B}{}_{5} \overset{C}{}_{2} \overset{C}{}_{5} \overset$	0.21 (BCH ₂ 0.80 (CH ₃) ² J(HH) 8.0) 0.82 Hz	4.19	1.8 – 2.32 (CCH ₂) 1.01 (CH ₃) ² J(HH) 7.6 Hz
<u>1</u>	$H_{5}C_{2}-C+C+C_{2}H_{5}$ $H-C$	- 0.40	1.04 (BCI - °)	H ₂) 4.16	1.8 – 2.32 (CCH ₂) 1.01 (CH ₃)

Tab. 1. ¹H-NMR-Daten von nido-2,3,4,5-Tetracarbahexaboranen(6) und 2,5-Diboryl-1-bora-3cyclopentenen

^{a)} δ^1 H gegen internes (CH₃)₄Si, **2**, **3**, **4** in CDCl₃; **6**, **7** in C₆D₆. – ^{b)} Intensitätsschwache Signale bei 0.64, 0.06, 2.06, 1.61 ppm. – ^{c)} Nicht eindeutig zuzuordnen infolge Signalüberlappung.

zeigt die $(CH_3)_2NBC_2$ -Gruppe in 3 an. Eine analoge Zuordnung gilt für 2, dessen ¹¹B-NMR-Spektrum nach Einengen der Reaktionslösung aufgenommen wurde: die beiden Signale bei 86.5 und 76.6 ppm entsprechen BC₃- und C₂BBr-Gruppierungen.

¹H-entkoppelte ¹³C-NMR-Spektren von **3** stützen die getroffenen Zuordnungen. Infolge teilweise relaxierter Kopplung ¹ $J(^{11}B^{13}C)$ beobachtet man die ¹³C-NMR-Signale der CH₃B-Gruppen von **3** als breite Singuletts im Verhältnis 2:1 bei 1.6 und 5.5 ppm (Tab. 2). Ein weiteres breites Signal bei 54.3 ppm ist den Ring-C-Atomen zuzuschreiben, an die je zwei B-Atome gebunden sind. Für die (CH₃)₂N-Gruppe beobachtet man analog zum ¹H-NMR-Spektrum zwei ¹³C-NMR-Signale, die begleitet werden von zwei wesentlich schwächeren Signalen, so daß auch das ¹³C-NMR-Spektrum auf das Vorliegen von zwei Isomeren hinweist. Im Olefinbereich findet man hingegen nur ein scharfes intensitätsschwaches ¹³C-NMR-Signal, in Übereinstimmung mit dem Strukturvorschlag, ¹H-off-resonance-Experimente bestätigten die getroffene Zuordnung.

Tab. 2. ¹³C- und ¹¹B-NMR-Daten, δ [ppm]^{a)}, der 2,5-Diboryl-1-bora-3-cyclopenten-Derivate 2 und 3

	¹¹ B(1)	¹¹ B(5)	¹³ C(2)	¹³ C(3)	¹³ C(4)	¹³ C(6)	¹³ C(7)	¹³ C(8)
$\begin{array}{c} H_{3}C \\ H_{3} \\ H_{3$	+ 89	+ 45.2	+ 54.3 ^{b)}	+ 134.6	+ 5.5 ^{c)}	+14.6	+ 1.6 ^{c)}	+ 37.7 ^{d)} + 33.8 ^{d)}
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \frac{3}{B^{(6)}} \\ H_{3}C \\ H_{3}C$	+ 86.5	+ 76.6	+ 73.0 ^{b)}	+ 136.9	+ 10.3 ^c)	+ 16.6	+ 17.8 ^{c)}	~

^{a)} Siehe Tab. 3, Fußnote a). – ^{b)} Breit. – ^{c)} Breit, Verhältnis der Resonanzen für C(7) und C(4) 2:1. – ^{d)} Wird von Signalen geringerer Intensität, ca. 10%, begleitet.

nido-Tetracarbahexaborane(6)

¹H-⁽¹¹B)</sup>-Entkopplungsexperimente ermöglichen bei den untersuchten Tetracarbahexaboranen die Zuordnung der CH₃- bzw. C₂H₅-Gruppen zu den Basis- oder Spitzen-Boratomen. Da keine merkliche Aufschärfung der Basis-CH-Resonanzen bei Einstrahlung der ¹¹B-Resonanzfrequenz des Basis-Boratoms (B(6)) erfolgt, muß ²J(¹¹B¹H) \leq 1 Hz sein. Die Zuordnung der ¹H-NMR-Signale bei dem Isomerengemisch 6/7 ist nicht immer eindeutig möglich, da selbst bei einer Meßfrequenz von 200 MHz noch Signalgruppen überlappen. Insbesondere gilt dies für den sehr komplexen Bereich der CH₃- CH₂-Gruppen: die beiden Protonen an dem prochiralen Kohlenstoffatom geben ein AB-Spektrum und koppeln zudem mit den Protonen der CH₃-Gruppe, wobei jedes Isomere seinen Anteil beisteuert.

Die beiden im 1:1-Verhältnis beobachteten ¹¹B-NMR-Signale für **4**, **6** und **7** (Tab. 3) entsprechen Literaturdaten^{7,8)} für *nido*-Tetracarbahexaborane(6). Interessant sind jedoch erst die protonenentkoppelten ¹¹B-NMR-Spektren. Sie erlauben etwa bei Polyboranen^{15–17)} oder anderen Carborantypen^{17,18)} die Beobachtung von ¹¹B¹¹B-Kopplungen und geben damit Hinweise auf die Bindungsverhältnisse in diesen Verbindungsklassen. Beispielsweise betragen $J(^{11}B(1)^{11}B(5))$ und $J(^{11}B(1)^{11}B(4))$ in *nido*-2,3- $C_2B_4H_8$ 25 bzw. ≤ 12 Hz, und $J(^{11}B(1)^{11}B(4))$ und $J(^{11}B(1)^{11}B(3))$ 18 bzw. ≤ 9 Hz¹⁷⁾ in *nido*-2-CB₃H₉. Da $J(^{11}B^{11}B)$ von der s-Elektronendichte in der B–B-Bindung abhängt^{17,19)}, legen die kleinen Kopplungskonstanten nahe, daß offenbar sehr wenig s-Elektronendichte von den an Kohlenstoff gebundenen Boratomen B(4) bzw. B(3) in der Basisfläche der Carborane zur Bindung mit dem apicalen Boratom B(1) zur Verfügung gestellt wird. In verstärktem Maße trifft dies für die hier untersuchten *nido*-2,3,4,5-Tetracarbahexaborane(6) zu, denn weder bei ¹H-Entkopplung noch bei Anwendung von "line narrowing technique" erfolgt eine Aufspaltung der ¹¹B-Resonanzsignale. Für das ¹¹B(1)-Resonanzsignal in 4 beobachtet man eine Linienbreite von nur 8 Hz. Danach müssen bei *nido*-Carboranen mit gleicher Zahl von Gerüstatomen und Gerüstelektronen¹²⁾ nicht zwangsläufig gleichartige Bindungsverhältnisse vorliegen, trotz gleichartigen Trends in den δ^{13} C- und δ^{11} B-Daten²⁰⁾.

Tab. 3. ¹³C- und ¹¹B-NMR-Daten^{a)} von nido-2,3,4,5-Tetracarbahexaboranen(6)

δ [ppm] (J(¹³ C ¹¹ B)) [Hz]	H ₃ C ^H 3 H ₃ C ⁻ C ⁽⁵⁾ C ⁽³⁾ C ⁽³⁾ C ⁽³⁾ C ⁽⁴⁾ H ⁻ C ⁽⁵⁾ H ⁽³⁾ C ⁻ H H ⁽⁶⁾ C ⁽³⁾ C ⁽⁴⁾ H ⁽⁶⁾ C ⁽⁴⁾ C ⁽⁴⁾ C ⁽⁴⁾ C ⁽⁴⁾ C ⁽⁴⁾ H ⁽⁶⁾ C ⁽⁴⁾ C ⁽⁴⁾ C ⁽⁴⁾ C ⁽⁴⁾ C ⁽⁴⁾ C ⁽⁴⁾ C ⁽⁴⁾ C ⁽⁴⁾ C ⁽⁴⁾ C ⁽⁴⁾ C ⁽⁴⁾ C	$\begin{array}{c} \begin{array}{c} c_{2}H_{5}\\ B\\ H_{5}C_{2} \\ H-C\\ H-C\\ H_{3}\\ \hline C\\ H_{3}\\ \underline{6} \end{array}$	$\begin{array}{c} \overset{CH_3}{\underset{H}{\overset{B}{\underset{H}{\overset{C}{\overset{C}{\underset{H}{\overset{C}{\underset{H}{\overset{C}{\underset{H}{\overset{C}{\underset{H}{\overset{C}{\underset{H}{\overset{C}{\underset{H}{\overset{C}{\underset{H}{\overset{H}{\underset{H}{\overset{C}{\underset{H}{\overset{C}{\underset{H}{\overset{H}{\underset{H}{\overset{C}{\underset{H}{\overset{R}{\underset{H}{\overset{C}{\underset{H}{\overset{R}{\underset{H}{\overset{R}{\underset{H}{\overset{R}{\underset{H}{\overset{R}{\underset{H}{\overset{R}{{\atopH}}{\underset{R}{\overset{R}{{\atopH}}{\underset{R}{\overset{R}{{\atopH}}{\underset{R}{{\atopH}}{{I}}{{I}}}}}}}}}}}}}}}}}}}}}}}}$
$\delta^{11}B(1)$ $\delta^{11}B(6)$	- 45.5 + 19.3	- 45.5 + 19.2	- 46.8 + 20.6
8 ¹³ C(2.5)	+ 87 3 (59)	+84.5(-b)	+ 85 3 (b))
$\delta^{13}C(3,4)$	+ 109.2 ()	+1145(-)	$\pm 114.3(-)$
$8^{13}C(B(1)C)$	+109.2(-)	-4.6 (b)	+114.5 ()
O(C(B(1)C))	- 13.4 (81)	-4.0 (-5)	12 8 (7()
13 CORVER		$+13.4 (CH_2 - CH_3) (-)$	- 13.8 (76)
8 ¹⁵ C(B(6)C)	- 5.9 (76)	-2.9(-0)	+6.0(0)
13			$+12.7 (CH_2 - CH_3) (-)$
$\delta^{13}C(C(3,4)C)$	+ 12.6 (—)	+ 20.8 ()	+ 20.8 ()
		$+13.7 (CH_2 - CH_3) (-)$	$+13.8 (CH_2 - CH_3) (-)$

a) $\delta^{13}C$ gegen (CH₃)₄Si = 0, 4 in CDCl₃ (76.9 ppm), 6, 7 in C₆D₆ (128 ppm), $\delta^{11}B$ gegen BF₃ · O(C₂H₅)₃ = 0; +-Vorzeichen kennzeichnen Verschiebungen zu tiefem Feld relativ zum Standard.

b) Infolge Überlappung mit anderen Signalen keine zuverlässige Ermittlung von ¹J(¹³C¹¹B) möglich.

Obwohl Carborane mittels ¹¹B-Kernresonanz gründlich untersucht sind, liegen kaum systematische ¹³C-NMR-Studien vor²¹). Dies gilt insbesondere für das Kopplungsverhalten zwischen ¹¹B und ¹³C; bestimmt wurde lediglich $J(^{11}B^{13}C)$ in *closo*-1,5-C₂B₃H₅^{c20}. Daß diese Daten wertvolle Informationen liefern, zeigte die Bestimmung von $J(^{11}B^{11}B)$ und $J(^{11}B^{13}C)$ in Polyboranen¹⁵⁻¹⁸) und Organoboranen²¹). – Bei der Zuordnung der ¹³C-NMR-Spektren, die wir von 4, 6 und 7 aufnahmen (Tab. 3), halfen selektive ¹³C-NMR-Spektrum, und im Gegensatz zur Isomerenmischung 6, 7 konnte auch ¹ $J(^{12}C(2,5)^{11}B(6))$ ermittelt werden. Die Kopplung von ¹¹B(1) bzw. ¹¹B(6) zu ¹³C der direkt gebundenen Methylgruppe übertrifft jene in Organoboranen²¹). Dabei ist anzumerken, daß das Verhältnis ¹ $J(^{11}B(1)^{13}CH_3)/^{1}J(^{11}B(6)^{13}CH_3)$ mit dem Wert 1.07 kleiner ist als ¹ $J(^{11}B(1)H)/^{1}J(^{11}B(6)H)$ in *nido*-2,3,4,5-C₄B₂H₆⁸, das 1.46 beträgt. Vergleicht man ¹ $J(^{11}B(6)^{13}C(2,5))$ von 4 (59 Hz) mit ¹ $J(^{11}B^{13}C)$ in *closo*-1,5-C₂B₃H₅ (18 Hz), so legt dieser Vergleich nahe, daß im *nido*-C₄B₂-Carboran 4 die Bindung zwischen B(6) und

Chemische Berichte Jahrg. 112

Jahrg. 112

den C-Atomen 2 und 5 weitgehend als Zweizentren-Zweielektronen-Bindung aufzufassen ist, während im *closo*-Carboran $C_2B_3H_5$ alle B – C-Bindungen ausgeprägten Mehrzentrencharakter besitzen, denn der gemessene Wert in 4 entspricht nahezu ¹J(¹¹B¹³C) in Trivinylboran²¹⁾ und entspräche damit der Bindung eines B(sp²)-Atoms an ein C(sp²)-Atom.

Zwischen dem apicalen Boratom in 4 und den Basis-C-Atomen ließ sich keine Kopplung feststellen; beim Einstrahlen der B(1)-Resonanzfrequenz wird die ¹³C-Resonanz der C-Atome 3 und 4 nicht schärfer. Ebensowenig beeinflußt B(1) die Linienbreite der 13 C-Resonanzsignale von C(2) und C(5), die bei selektiver Entkopplung von B(6) und ¹H-Rauschentkopplung als scharfes Singulett erscheinen. Dies trägt wie der oben genannte Befund dazu bei, die Bindung zwischen den Basis-Atomen und dem apicalen Bor-Atom weitgehend durch Donor-Akzeptor-Wechselwirkung basaler π -Elektronen mit den p_v -und p_v -Orbitalen von B(1) zu beschreiben. Dieser Modellvorschlag stünde mit den beobachteten Kopplungen und den nicht meß- bzw. nachweisbaren Kopplungen ${}^{1}J({}^{11}B(1){}^{13}C(2,5))$ im Einklang, falls auch hier der Betrag der Kopplung dem s-Charakter der Bindung proportional ist. Da dies für Polyborane und closo-Carborane gilt, sollten nido-Tetracarbahexaborane keine Ausnahme machen. CNDO/S-Berechnungen für nido-2,3,4,5-C₄B₂H₆ ergaben, daß zwischen B(1) und allen Basisatomen die s-Bindungsordnungen $p_{B(2s)B(2s)}^2$ und $p_{B(2s)C(2s)}^2$ gering sind, während die π -Elektronendichte in der Basisfläche weitgehend delokalisiert ist²³⁾. Die bei hohem Feld liegenden ¹³C-NMR-Signale der CH₃B- und CH₃- CH_2 -B-Gruppen wurden durch ¹H-off-resonance-Experimente und selektive B(1)-Entkopplung eindeutig zugeordnet; sie entsprechen den 13 C-NMR-Signalen von 1-CH₃-B₅H₈ und 1-CH₃CH₂-B₅H₈²⁴). Das 13 C-NMR-Signal der CH₃B(6)-Gruppen wird bei tieferem Feld gefunden, in Übereinstimmung mit dem Trend der bei 1,2-(CH₃)₂B₅H₇ beobachtet wurde²⁵⁾.

Für Carborane wurde postuliert, daß die chemische Verschiebung δ¹³C eine Funktion der Koordinationszahl des Kohlenstoffes sei²⁰⁾. Nach dieser Beziehung entsprechen die δ¹³C-Werte der C-Atome 2 – 5 in **4**, **6** und **7** Kohlenstoffatomen mit der Koordinationszahl **4**; zudem liegen sie in einem Bereich nahe den ¹³C-Resonanzen von η^5 -C₅H₅-Übergangsmetallverbindungen²⁷⁾, denen ja ebenfalls eine *nido*-Struktur zukommt. Außerdem liegt δ¹¹B von B(6) formal ebenfalls im Bereich ¹¹B-chemischer Verschiebungen für tetrakoordiniertes Bor, und δ¹¹B(6) liegt auch im Bereich der ¹¹B-Resonanzsignale π-komplexgebundener Borabenzol-Anionen²⁸⁾ und Boracyclopentadienen⁵⁾. Diese Analogie läßt sich fortsetzen, wie ein Vergleich entsprechender δ¹³C-Werte in der folgenden Verbindungsreihe zeigt:

Wendet man die Beziehung $\delta^{11}B = 0.393 \cdot \delta^{13}C - 30.73^{31}$, die für Carbenium-Ionen und isoelektronische Borane gilt, auf die diskutierten Carborane an, dann wird diese gut für B(6) und annähernd für B(1) erfüllt. Darüber hinaus kann man schließen,

daß für diese *nido*-Strukturen und für η^5 -C₅H₅- und η^5 -BC₄-Metallsysteme weniger das apicale Atom (B, C oder Metall) oder die Ladung auf die chemische Verschiebung der Basisatome (δ^{11} B, δ^{13} C) Einfluß nehmen als vielmehr die gleichartigen Strukturmerkmale und damit die Symmetrie der Elektronendichte um den betrachteten Kern³²).

Nach den Ergebnissen dieser Untersuchung sind nicht 1,4-Diboracyclohexadiene Zwischenstufen auf dem Weg zu *nido*-Tetracarbahexaboranen – obwohl diese klassische Struktur³³⁾ nur wenig instabiler als die *nido*-Struktur ist und durch π -Donorsubstituenten am B-Atom gegenüber der Carboranstruktur energetisch sogar begünstigt wird – sondern bis(borylierte)Boracyclopentene. Deren Bildung ist ungewöhnlich, denn Reaktionen von Stanna-2,5-cyclohexadienen mit Lewis-Säuren führen üblicherweise zu Heterocyclohexadienen, d. h. die Sechsringstruktur bleibt erhalten. In der Tat weichen 1-Stanna-4-bora-2,5-cyclohexadiene in ihrem Reaktionsverhalten von anderen 1-Stanna-2,5-cyclohexadienen ab³⁴; der konfigurationsbestimmende Einfluß des Bors auf das Ringsystem ist hier unübersehbar.

Dem Fonds der Chemischen Industrie und der BASF AG danken wir für die Unterstützung dieser Arbeit. Besonderen Dank schulden wir der Deutschen Forschungs-Gemeinschaft für die Beschaffung des Bruker WP 200-NMR-Spektrometers.

Experimenteller Teil

¹H-NMR-Spektren: Varian A-60 sowie Bruker-WP-200-Gerät, letzteres mit Protonen-Meßsonde, die ¹H-{¹¹B}-Doppelresonanzexperimente ermöglichte. – ¹¹B-NMR-Spektren: Bruker-WP-200-Gerät; in CDCl₃ oder C₆D₆, Standard externes BF₃ · O(C₂H₅)₂ in CDCl₃. – ¹³C-NMR-Spektren: Bruker-WP 200, ¹³C-Meßkopf mit ¹H-Entkopplerspule mit zusätzlicher Abstimmung für ¹¹B, um ¹³C-{¹H¹¹B}-Tripelresonanzexperimente zu ermöglichen. Die δ^{13} C-Werte wurden auf TMS als Standard umgerechnet (C₆D₆ 128.0, CDCl₃ 76.9 ppm). – Positive Vorzeichen bei Angabe der δ -Werte entsprechen Signallagen bei tieferem Feld relativ zum Standard.

Zur Aufnahme der ¹³C-NMR-Spektren von 4, 6, 7 wurde ein kleiner Pulswinkel (ca. 20°) gewählt, da die an B(1) gebundenen C-Atome offenbar ungewöhnlich lange Relaxationszeiten T_1 besitzen.

 1^{10} und 5^{11} wurden nach Literaturvorschriften dargestellt, CH_3BBr_2 aus $Sn(CH_3)_4$ und BBr_3^{36} .

2,5-Bis[(dimethylamino)methylboryl]-1,3,4-trimethyl-1-bora-3-cyclopenten (3): Zu einer Lösung von 3.63 g (14.2 mmol) 1 in 40 ml Hexan tropften bei 0°C in 1 h 5.70 g (30.7 mmol) CH₃BBr₂, gelöst in 20 ml Hexan. Nach 24 stdg. Rühren fügte man bei -60°C in 20 min 3.96 g (CH₃)₃SiN(CH₃)₂ (33.8 mmol) in 20 ml Hexan hinzu. Nach Erwärmen auf Raumtemp. ließ man 1 h unter Rückfluß kochen. Durch 15stdg. Abkühlen auf -78°C fiel (CH₃)₂SnBr₂ (3.71 g, 85%) aus. Es wurde in der Kälte abgefrittet. Das Filtrat erbrachte bei der fraktionierenden Destillation 1.63 g (47%) 3 als farblose, mäßig oxidationsempfindliche Flüssigkeit vom Sdp. 67 – 68°C/10⁻³ Torr.

C13H29B3N2 (245.8) Ber. C 63.52 H 11.89 N 11.40 Gef. C 62.30 H 11.83 N 11.24

2,5-Bis(brommethylboryl)-1,3,4-trimethyl-1-bora-3-cyclopenten (2): Es wurde wie vorstehend verfahren, die Abkühlung des Reaktionsgemisches jedoch nach der Umsetzung von 1 mit CH_3BBr_2 vorgenommen. Nach 15 h bei – 78 °C wurde vom ausgefallenen (CH_3)₂SnBr₂ abgefrittet und das Lösungsmittel i. Vak. abgezogen. Zurück blieb eine gelbliche, oxidations- und hydrolyseempfindliche Flüssigkeit. Aufgrund der Verunreinigung mit Organozinnverbindungen wurde

auf Analysen von 2 verzichtet, und die Charakterisierung erfolgte NMR-spektroskopisch sowie durch Darstellung von 3 aus 2.

nido-1,3,4,6-Tetramethyl-2,3,4,5-tetracarbahexaboran(6) (4): Die Destillation von 2, hergestellt aus 3.51 g (13.8 mmol) 1, lieferte 1.3 g einer hellbraunen Flüssigkeit, Sdp. 42-48 °C/ 11 Torr. Die Redestillation ergab 0.7 g (5.2 mmol, 38%) einer gelblichen, an der Luft rauchenden Flüssigkeit, die sich als verunreinigtes Tetracarbahexaboran 4 identifizieren ließ. Verunreinigungen durch Borhalogenide wurden durch Umsetzung mit $(CH_3)_3SiN(CH_3)_2$ beseitigt, und die Destillation ergab 0.32 g (2.4 mmol, 17%) einer farblosen Flüssigkeit, die jedoch nach ¹H-NMR-Spektren (Signale bei 0.06, 1.72, 2.01 und 5.12 ppm) noch immer Verunreinigungen enthielt. Auf Analysen wurde darum verzichtet.

Ein reineres Produkt 4 (≤95%) erhielten wir durch Umsetzung von 2 mit K/Na-Legierung in Hexan. Dieses wurde für die spektroskopischen Untersuchungen eingesetzt.

C₈H₁₄B₂ (131.8) Ber. C 72.89 H 10.70 Gef. C 73.73 H 10.84

nido-3,4,6-Triethyl-1-methyl-2,3,4,5-tetracarbahexaboran(6) (6) und nido-1,3,4-Triethyl-6methyl-2,3,4,5-tetracarbahexaboran(6) (7): 1.78 g (9.57 mmol) Methylbordibromid in 10 ml Pentan wurden bei – 78 °C unter Rühren mit 2.48 g 5 (9.57 mmol) in 10 ml Pentan versetzt. Man ließ auf Raumtemp. erwärmen, entfernte das Pentan i. Vak. und erhitzte den öligen braunen Rückstand langsam auf 130 °C bei 10⁻² Torr. In einer Kühlfalle wurden farblose Kristalle und eine farblose Flüssigkeit aufgefangen. Nach Aufnahme in Pentan und Umkristallisieren wurden die Kristalle als (CH₃)₂SnBr₂ identifiziert. Destillative Aufarbeitung des Filtrats ergab 0.55 g (33%) einer farblosen Flüssigkeit 6 und 7, die geringfügig mit Organozinnverbindungen verunreinigt war, deren vollständige Abtrennung bisher nicht gelang. Darum wurde auf analytische Bestimmungen verzichtet.

Literatur

- ¹⁾ C. Mitteil.: H. Nöth, W. Winterstein, W. Kaim und H. Bock, Chem. Ber. 112, 2494 (1979).
- ²⁾ A. J. Ashe III und P. Shu, J. Am. Chem. Soc. 93, 1804 (1971).
- ³⁾ ^{3a)} P. L. Timms, J. Am. Chem. Soc. **90**, 4585 (1968). ^{3b)} P. S. Madren, A. Modinos, P. L. Timms und P. Woodward, J. Chem. Soc., Dalton Trans. 1975, 1272.
- ⁴⁾ ^{4a)} J. J. Eisch, W. K. Hota und S. Kozima, J. Am. Chem. Soc. **91**, 4575 (1969). ^{4b)} J. J. Eisch und J. E. Galle, ebenda 97, 4436 (1975).
- ⁵⁾ G. E. Herberich, J. Hengesbach, U. Kölle, G. Huttner und A. Frank, Angew. Chem. 88, 450 (1976); Angew. Chem., Int. Ed. Engl. 15, 779 (1976).
- 6) L. Killian und B. Wrackmeyer, J. Organomet. Chem. 148, 137 (1978).
- 7) P. Binger, Tetrahedron Lett. 1966, 2675.
- 8) V. R. Miller und R. N. Grimes, Inorg. Chem. 11, 862 (1972).
- 9) T. P. Onak und G. T. F. Wong, J. Am. Chem. Soc. 92, 5226 (1970).
- ¹⁰⁾ H.-O. Berger, H. Nöth, G. Rub und B. Wrackmeyer, in Vorbereitung.
- ¹¹⁾ L. Killian und B. Wrackmeyer, J. Organomet. Chem. 132, 213 (1977).
 ¹²⁾ K. Wade, Chem. Br. 11, 177 (1975), und dort zitierte Literatur.
- 13) B. Wrackmeyer, Manuskript in Vorbereitung.
- 14) H. Nöth und B. Wrackmeyer, Nuclear Magnetic Resonance Spectroscopy of Boron Compounds in NMR-Basic Principles and Progress, Ed. P. Diehl, E. Fluck und R. Kosfeld, Vol. 14, Springer-Verlag, Berlin-Heidelberg-New York 1978.
- 15) J. D. Odom, P. D. Ellis und H. C. Walsh, J. Am. Chem. Soc. 93, 6704 (1971).
- ¹⁶⁾ E. J. Stampf, A. R. Garber, J. D. Odom und P. D. Ellis, J. Am. Chem. Soc. 98, 6550 (1976). 17) T. Onak, J. B. Leach, S. Anderson, M. J. Frisch und D. Marynick, J. Magn. Reson. 23, 237 (1976).
- 18) J. W. Akitt und C. G. Savory, J. Magn. Reson. 17, 122 (1975).
- ¹⁹⁾ J. Kroner und B. Wrackmeyer, J. Chem. Soc., Faraday Trans. 2, 72, 2283 (1976).
- ²⁰⁾ L. J. Todd, A. R. Siedle, G. M. Bodner, S. B. Kahl und J. P. Hickey, J. Magn. Reson. 23, 301 (1976).
- ²¹⁾ B. Wrackmeyer, Prog. Nucl. Magn. Reson. Spectrosc., im Druck.

- ²²⁾ T. Onak und E. Wan, J. Chem. Soc., Dalton Trans. 1974, 665.
- 23) J. Kroner, persönliche Mitteilung.
- ²⁴⁾ L. W. Hall, D. W. Lowman, P. D. Ellis und J. D. Odom, Inorg. Chem. 14, 580 (1975).
- ²⁵⁾ Die in der Literatur für 2-CH₃B₅H₈ und 1,2-(CH₃)₂B₅H₇²⁶⁾ angegebenen ¹³C-NMR-Daten sollten überprüft werden.
- ²⁶⁾ T. Onak und E. Wan, J. Magn. Reson. 14, 66 (1974).
- ²⁷⁾ B. E. Mann, Adv. Organomet. Chem. 12, 135 (1974).
- ²⁸⁾ G. E. Herberich, H. J. Becker, K. Carsten, C. Engelke und W. Koch, Chem. Ber. 109, 2382 (1976).
- ²⁹⁾ H. Hogeveen und P. W. Kwant, J. Am. Chem. Soc. 96, 2208 (1974).
- ³⁰⁾ P. Jutzi und A. Seufert, Angew. Chem. 89, 339 (1977); Angew. Chem., Int. Ed. Engl. 16, 330 (1977).
- 31) H. Nöth und B. Wrackmeyer, Chem. Ber. 107, 3089 (1974).
- ³²⁾ Messungen der Anisotropie der ¹³C-chemischen Verschiebung in Aren-Chromtricarbonyl-Komplexen führen zu ähnlichen Folgerungen: M. M. Maricq, J. S. Waugh, J. L. Fletcher und M. J. McGlinchey, J. Am. Chem. Soc. 100, 6902 (1978).
- ³³⁾ R. N. Camp, D. S. Marynick, G. D. Graham und W. N. Lipscomb, J. Am. Chem. Soc. 100, 6781 (1978).
- ³⁴⁾ Dies zeigen auch die Reaktionen von 1,4-Distanna-2,5-cyclohexadien mit Borhalogeniden RBX₂ oder BX₃, die nur im Fall von R = Ferrocenyl zu 1,4-Diboracyclohexadienen führten³⁵⁾.
- 35) G. E. Herberich und B. Hessner, J. Organomet. Chem. 161, C 36 (1978).
- ³⁶⁾ P. I. Paetzold und W. Hanson, Z. Anorg. Allg. Chem. 345, 79 (1966).

[470/78]